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Abstract. There has been a lot of research targeting text classification. Many of them focus
on a particular characteristic of text data - multi-labelity. This arises due to the fact that a
document may be associated with multiple classes at the same time. The consequence of such a
characteristic is the low performance of traditional binary or multi-class classification techniques on
multi-label text data. In this paper, we propose a text classification technique that considers this
characteristic and provides very good performance. Our multi-label text classification approach
is an extension of our previously formulated [3] multi-class text classification approach called
SISC (Semi-supervised Impurity based Subspace Clustering). We call this new classification model
as SISC-ML(SISC Multi-Label). Empirical evaluation on real world multi-label NASA ASRS
(Aviation Safety Reporting System) data set reveals that our approach outperforms state-of-the-
art text classification as well as subspace clustering algorithms.

1. Introduction

Based on the number of labels that can be associated with a document, text data sets can be
divided into three broad categories. These three types of data sets are binary, multi-class and multi-
label data sets. In case of binary data sets, a data point or document may belong to either of
two possible class labels. In case of multi-class data sets, however, more than two class labels are
involved and just like binary data, each data point can be associated with only a single class label.
Finally, in case of multi-label data sets, there are more than two class labels involved and each data
point may belong to more than one class label at the same time.

The NASA ASRS (Aviation Safety Reporting System) data set is a multi-label text data set. It
consists of aviation safety reports that the flight crews submit after completion of each flight. Each
such report describes the events that took place during a flight. Since ASRS is a multi-label data
set, each report may belong to multiple class labels. Our objective is to propose a classification
model that can successfully associate class labels to each report in the ASRS data set.

There are a number of challenges associated with the ASRS data set. First of all, these reports
are written in plain English language. The characters are all uppercase letters. Also there are
usually quite a few technical terms and jargons present in each of the reports. So, it is hard to
distinguish between acronyms and normal words. The usual challenges of classifying text data are
also present in this data set. These include very high and sparse dimensionality. This high and
sparse dimensionality happens as the dimension or feature space consists of all the distinct words
appearing in all the reports. Such a report (with key parts boldfaced) is provided next, as an example.
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I TAXIED SMALL TRANSPORT X FROM WALLACE FACTORY TO HOLD SHORT OF RUNWAY . I HAD AN-
OTHER SMALL TRANSPORT Y TAXI OUT FROM PHH FOR RUNWAY . I COORDINATED WITH LOCAL CON-
TROL TO TAXI SMALL TRANSPORT X ACROSS THE RUNWAY . LOCAL CONTROL COULD NOT APPROVE
THE CROSSING , SO I DECIDED TO EXPEDITE MY GROUND TRAFFIC BY DIVERTING SMALL TRANS-
PORT WEST TO A DIFFERENT INTERSECTION AND TAKING SMALL TRANSPORT Y AT PHH TO THE END
OF RUNWAY . WHEN I CALLED SMALL TRANSPORT Y AT PHH I USED THE NUMBERS OF SMALL TRANS-
PORT X AT THE WALLACE INTERSECTION AND TOLD HIM TO TAXI TO THE END OF RUNWAY . SMALL
TRANSPORT X CROSSED THE RUNWAY WHILE SMA Z STARTED HIS TAKEOFF ROLL . WHEN I NOTICED
THAT SMALL TRANSPORT Y PHH WAS NOT MOVING , MY SCANNING CAUGHT SMALL TRANSPORT
X CROSSING AT THE INTERSECTION . I IMMEDIATELY REALIZED MY MISTAKE AND SINCE SMALL
TRANSPORT X WAS HALFWAY ACROSS THE RUNWAY AND SMA Z WAS NEARLY 4000 FEET DOWN THE
RUNWAY , I ELECTED TO LET SMALL TRANSPORT X CONTINUE ACROSS AND TOLD THE LOCAL CON-
TROLLER TO LET SMA Z TAKE OFF , SINCE SMALL TRANSPORT X WOULD BE CLEAR BEFORE SMA Z
BECAME A FACTOR . NO EVASIVE ACTION WAS TAKEN BY THE PILOTS , NO OTHER ACTION BY ME WAS
REQUIRED , EXCEPT TO NOTIFY MY SUPERVISOR OF WHAT TOOK PLACE . I BELIEVE MY SCANNING
HELPED PREVENT A MORE SERIOUS OUTCOME , BUT I MUST ENDEAVOR TO BE MORE POSITIVE IN
TRANSMITTING INSTRUCTIONS TO BE ASSURED THAT THIS WILL NOT HAPPEN AGAIN .

Anomaly class labels:
• Conflict : Ground Less Severe

• Incursion : Runway
• Non Adherence : Required Legal Separation

In face of all these challenges, traditional as well as state-of-the-art text classification approaches
perform poorly on the ASRS data set, as we have found through our experiments. We, therefore,
looked through all these challenges and came up with a text classification approach that handles
each of them.

If we look into the literature for multi-label classification, we can see that most traditional ap-
proaches try to transform the multi-label problem to multi-class or binary class problem. For
example, if there are T class labels in the multi-label problem, one binary SVM (i.e., one vs. rest
SVM) classifier can be trained for each of the class labels. But, this does not provide a correct inter-
pretation of the data. Because for a binary SVM classifier corresponding to the class label Incursion

: Runway, the above report belongs to both the positive and negative classes simultaneously.
In order to correctly interpret the multi-labelity of such data, we found that clustering can perform

this interpretation in a more meaningful way. In fact, we found that the notion of subspace clustering
matches that of text data, i.e., having high and sparse dimensionality and multi-labelity. Subspace
clustering allows us to find clusters in a weighted hyperspace [9] and can aid us in finding documents
that form clusters in only a subset of dimensions. In this paper, we are only considering soft subspace
clustering where each dimension contributes differently in forming the clusters. Applying subspace
clustering can, to a large degree, divide the documents into clusters that correspond to individual
or a particular set of class labels. For this reason, we have formulated SISC-ML as a subspace
clustering algorithm.

Another important consideration during text classification is the availability of labeled data.
Manual labeling of data is a time consuming task and as a result, in many cases, they are available
in limited quantity. If we consider just the labeled data, then we are sometimes left with too little
data to build a classification model that can perform well. On the other hand, if we ignore the class
labels of the labeled data for unsupervised learning, then we are forsaking valuable information that
could allow us to build a better classification model. Facing both these extremes, we have designed
our subspace clustering algorithm in a semi-supervised manner. This allows us to make use of both
the labeled and unlabeled data.

Usually, text classification approaches focus on a specific characteristic of text data. There are
text classification approaches that consider its high dimensionality, some consider its multi-labelity
and some try to train using a semi-supervised approach. As a result, many of these methods can not
be used universally. Sometimes, the underlying theory of these methods may become incorrect. For
example, the K-Means Entropy based method [11] uses a subspace clustering approach that is based
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on the entropy of the features or dimensions. If the data is multi-label, then the entropy calculation
no longer holds ground. Similarly, methods that are supervised, depend heavily on the amount of
labeled data and smaller amount of labeled data may hinder the generation of high quality classifiers.
In our previous work, we formulated SISC to consider the high dimensionality and limited labeled
data challenges [3]. In this paper we extend SISC to handle the multi-label scenario. Therefore,
this algorithms called SISC-ML handles all three challenges associated with ASRS and any other
text data set.

There are a number of contributions in this paper. First, we propose SISC-ML, a semi-supervised
subspace clustering algorithm that performs well in practice even when a very limited amount of
labeled training data is available. Second, this subspace clustering algorithm successfully finds clus-
ters in the subspace of dimensions even when the data is multi-label. To the best of our knowledge,
this is the first attempt to classify multi-labeled documents using subspace clustering. Third, at the
same time, this algorithm minimizes the effect of high dimensionality and its sparse nature during
training. Finally, we compare SISC-ML with other classification and clustering approaches to show
the effectiveness of our algorithm over ASRS and other benchmark multi-label text data sets.

The organization of the paper is as follows: Section 2 discusses related works. Section 3 presents
the theoretical background of our basic subspace clustering approach SISC in semi-supervised form.
Section 4, then provides the modification of our subspace clustering approach to handle multi-label
data. Section 5 discusses the data sets, experimental setup and evaluation of our approach. Finally,
Section 6 concludes with directions to future work.

2. Related Work

We can divide our related work based on the characteristic of our SISC-ML algorithm. As
the name suggests, SISC-ML is a semi-supervised approach, it uses subspace clustering, and most
important of all, it is designed for multi-labeled data. Therefore, we have to look into the state-of-
the-art methods that are already in the literature for each of these categories of research. Also, we
need to discuss classification approaches that have been applied to our target ASRS data set. First
of all, we shall present the current state-of-the-art for multi-label classification algorithms, followed
by semi-supervised approaches and subspace clustering methods. We will conclude this section
by presenting some research that targets ASRS data set and analyzing how our newly proposed
SISC-ML method is different from existing methods (including our previously formulated SISC [3]).

Multi-label Classification: Classifying text data has been an active area of research for a long
time. Usually, each of these research works focus on some specific properties of text data. And,
one such property is its multi-labelity. Multi-label classification studies the problem in which a data
instance can have multiple labels at the same time. Approaches that have been proposed to ad-
dress multi-label text classification include margin-based methods, structural SVMs [18], parametric
mixture models [20], κ-nearest neighbors (κ-NN) [23], Ensemble of Pruned Set method [15] and Met-

aLableler [17] approach. One of the most recent works include RAndom k-labELsets (RAKEL) [19].
In a nutshell, it constructs an ensemble of LP (Label Powerset) classifiers and each LP is trained
using a different small random subset of the multi-label set. Then, ensemble combination is achieved
by thresholding the average zero-one decisions of each model per considered label. MetaLabeler is
another approach which tries to predict the number of labels using SVM as the underlying classifier.
Most of these methods utilize the relationship between multiple labels for collective inference. One
characteristic of these models is that they are mostly supervised [15, 17, 19]. SISC-ML is different
from these approaches as it considers the multi-label problem as a whole, not just a collection of
binary classification problems and also does not remove class label information (like [15]).

Semi-supervised Approaches: Semi-supervised methods for classification is also present in the
literature. This approach stems from the possibility of having both labeled and unlabeled data
in the data set and in an effort to use both of them in training. In [6], Bilenko et al. propose
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a semi-supervised clustering algorithm derived from K-Means, MPCK-MEANS, that incorporates
both metric learning and the use of pairwise constraints in a principled manner. There have also
been attempts to find a low-dimensional subspace shared among multiple labels [11]. In [22], Yu
et al. introduce a supervised Latent Semantic Indexing (LSI) method called Multi-label informed

Latent Semantic Indexing (MLSI). MLSI maps the input features into a new feature space that
retains the information of original inputs and at the same time captures the dependency of output
dimensions. Our method is different from this algorithm as our approach tries to find clusters in the
subspace. Due to the high dimensionality of feature space in text documents, considering a subset
of weighted features for a class is more meaningful than combining the features to map them to
lower dimensions [11]. In [7] a method called LPI (Locality Preserving Indexing) is proposed. LPI

is different from LSI which aims to discover the global Euclidean structure whereas LPI aims to
discover the local geometrical structure. But LPI only handles multi-class data, not multi-label data.
In [16] must-links and cannot-links, based on the labeled data, are incorporated in clustering. But, if
the data is multi-label, then the calculation of must-link and cannot-link becomes infeasible as there
are large number of class combinations and the number of documents in each of these combinations
may be very low. As a result, this framework can not perform well when using multi-label text data.

Subspace Clustering: In legacy clustering techniques like K-Means clustering, the clustering is
performed using all the features where the all of them are equally important. In case of subspace clus-
tering, however, not all features are regarded with equal importance. Based on how this importance
of features is handled, subspace clustering can be divided into hard and soft subspace clustering. In
case of hard subspace clustering, an exact subset of dimensions are discovered whereas soft subspace
clustering assigns weights to all dimensions according to their contribution in discovering correspond-
ing clusters. Examples of hard subspace clustering include CLIQUE [2], PROCLUS [1], ENCLUS [8]
and MAFIA [10]. A hierarchical subspace clustering approach with automatic relevant dimension
selection, called HARP, was presented by Yip et al. [21]. HARP is based on the assumption that
two objects are likely to belong to the same cluster if they are very similar to each other along many
dimensions. But, in multi-label and high dimensional text environment, the accuracy of HARP may
drop as the basic assumption becomes less valid due to the high and sparse dimensionality. In [12], a
subspace clustering method called nCluster is proposed. But, it has similar problems when dealing
with multi-label data.

ASRS Data Set: There has been some research that uses ASRS data set to detect anomalies.
One of the more recent works uses linear algebraic methods [4]. More specifically, the authors use
NMF ( Non negative Matrix Factorization) to generate a subset of features after which they apply
clustering. Finally, they assign anomaly relevance scores to each document. The main focus in this
work is the feature selection, not multi-labelity. A similar work is done in [5] where NMF and NMU

(Nonnegative Matrix Underapproximation) are used to find a reduced rank (i.e., low dimensional)
representation of each document. Just like [4], multi-labelity is not considered here. Mariana [14]
is another method that has been applied to ASRS data set. In short, it is an SVM approach and
utilizes Simulated Annealing to find the best hyperparameters for the classification model. It is,
therefore, a supervised approach and limited labeled data may affect the classification performance
adversely.

SISC: Our previously formulated SISC and our proposed new multi-label extension SISC-ML,
both use subspace clustering in conjunction with κ-NN approach. In this light, both of them are
closely related to the work of Jing et at. [11] and Frigui et at. [9]. The closeness is due the subspace
clustering and fuzzy framework respectively. However, they do not consider the Impurity present in
the clusters. Another significant difference with Frigui et at. [9] is that it is unsupervised in nature.
Hence, it disregards the labeling information present in the data. Another work that is closely
related to ours is the work of Masud et al. [13]. In [13], a semi-supervised clustering approach called
SmSCluster is used. They have used simple K-Means Clustering and it is specifically designed to
handle evolving data streams. Therefore, their algorithm is not appropriate for high dimensionality
or multi-labeled data. Although our text classification task is different in this perspective, we have
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used and extended the cluster impurity measure used in SmSCluster. Also, SmSCluster is not
designed to handle high dimensional text data.

The difference between SISC-ML and all these methods is that SISC-ML addresses all the chal-
lenges associated with text classification simultaneously. It can perform better even when the data
is high dimensional, or it is multi-label or in the face of limited labeled data. The main reason be-
hind this performance gain is the use of our subspace clustering algorithm that finds clusters in the
subspace based on the cluster impurity and Chi Square Statistic. Also the fuzzy cluster membership
allows effective generation of the probabilities of a test instance to belong to each class label. Which
in turn helps our SISC-ML to handle the multi-label problem.

3. Impurity Based Subspace Clustering

We need a proper understanding of our previously formulated SISC [3] classification model before
we describe SISC-ML, our proposed multi-label text classification approach. First of all, let us
introduce some notations that we will be using to formally describe the concept of SISC. Let X =
x1, x2 . . . , xn be a set of n documents in the training set, where each document xi, i = 1 : n, is
represented by a bag of m binary unigram features d1, d2 . . . , dm. di ∈ xj indicates that the unigram
feature di is present in the feature vector of data point xj . The total number of class labels is T
and a data point xi can belong to one or more of them. During clustering, we want to generate k
subspace clusters c1, c2, . . . , ck. Each data point in the training data set is a member of each of the
clusters cl, l = 1 : k, but with different weights w1, w2, . . . , wk. The set of labeled points in cluster
cl are referred to as Lcl

. Apart from these notations, we also use the following two measures in our
subspace clustering algorithm.

3.1. Impurity Measure. Each cluster cl, l = 1 : k, has an Impurity Measure (Impl) associated
with it. As the name of this measure suggests, this measure quantifies the amount of impurity within
each cluster cl. If all the data points belonging to cl have the same class label, then the Impurity

Measure of this cluster Impl is 0. On the other hand, if more and more data points belonging to
different class labels become part of cluster cl, the Impurity Measure of this cluster also increases.
Formally, Impl is defined as

Impl = ADCl × Entl

Here, ADCl indicates the Aggregated Dissimilarity Count and Entl denotes the entropy of cluster
cl. In order to measure ADCl, we first need to define the Dissimilarity Count [13], DCl(xi, yi):

DCl(xi, yi) = |Lcl
| − |Lcl

(t)|
if xi is labeled and its label yi = t, otherwise DCl(xi, yi) is 0. Lcl

indicates the set of labeled points
in cluster cl. In short, it counts the number of labeled points in cluster cl that do not have label t.
Then, for class label t, ADCl becomes

ADCl =
∑

xi∈Lcl

DCl(xi, yi)

The Entropy of a cluster cl, Entl is computed as

Entl =
T∑

t=1

(−pl
t ∗ log(pl

t))

where pl
t is the prior probability of class t, i.e., pl

t = |Lcl
(t)|

|Lcl
|

. It can also be shown that ADCl is
proportional to the gini index of cluster cl, Ginil [13]. But, we are considering fuzzy membership
in our subspace clustering formulation. So, we have modified our ADCl calculation. Rather than

289

2010 Conference on Intelligent Data Understanding



Figure 1. SISC Top Level Diagram

using counts, we use the membership weights for the calculation. This is reflected in the probability
calculation.

(1) pl
t =

n∑
j=1

wlj ∗ jt

where, jt is 1 if data point xj is a member of class t, and 0 otherwise. This Impurity Measure is
normalized using the Global Impurity Measure, i.e., the Impurity Measure of the whole data set,
before using it in the subspace clustering formulation.

3.2. Chi Square Statistic. From a clustering perspective, the conventional Chi Square Statistic

becomes,

χ2
li =

m(ad − bc)2

(a + c)(b + d)(a + b)(c + d)
where

a = number of times feature di occurs in cluster cl

b = number of times feature di occurs in all clusters except cl

c = number of times cluster cl occurs without feature di

d = number of times all clusters except cl occur without feature di

m = number of dimensions

This Chi Square Statistic χ2
li indicates the measure for cluster cl and dimension di.

3.3. Top Level Description of SISC. The semi-supervised clustering utilizes the Expectation-

Maximization(E-M) approach that locally minimizes an objective function. We use fuzzy clustering,
allowing each data point to belong to multiple clusters. We apply this approach as clusters can form
in different subsets of dimensions or features, in case of high dimensional text data. We consider
the weight of a dimension in a cluster to represent the probability of contribution of that dimension
in forming that cluster. The progress of the algorithm can be partitioned into the following steps as
shown in Figure 1:
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3.3.1. E-Step. In the E-Step, the dimension weights and the cluster membership values are updated.
Initially, every point, whether labeled or unlabeled, is regarded as a member of all the clusters with
equal weights. All the dimensions are also given equal weights.

3.3.2. M-Step. In this step, the centroids of the clusters are updated and the summary statistics,
i.e., the representation (percentage) of each class label within each of the clusters, is updated for use
in the next step. During the summary calculation, the membership weights are summed up rather
than using a threshold value to decide the membership of a point in a cluster. We employ this
approach so that membership weights can play useful role in class representation within a cluster
and to prevent the appearance of a new parameter.

3.3.3. κ-NN formulation. In this step, the κ nearest neighbor (κ-NN) clusters are identified for each
test data point. Here, κ is a user defined parameter. The distance is calculated in the subspace
where the cluster resides. If κ is greater than 1, then during the class probability calculation, we
multiply the class representation with the inverse of the subspace distance and then sum them up
for each class across all the κ nearest clusters.

3.4. Objective Function. SISC uses the following objective function as part of subspace cluster-
ing. The Chi Square Statistic has been included in the objective function so that more dimensions
can participate during the clustering process and clusters are not formed using just a few dimensions.
Impurity Measure [13] has also been used to modify the dispersion measure for each cluster. This
component helps in generating purer clusters in terms of cluster labels. But Impl can be calculated
using only labeled data points. If there are very few labeled data points, then this measure do not
contribute significantly during the clustering process. Therefore, we use 1+ Impl, so that unlabeled
data points can play a role in the clustering process. Using Impl in such a way makes our clustering
process semi-supervised.

The objective function, is written as follows:

(2) F (W, Z,Λ) =
k∑

l=1

n∑
j=1

m∑
i=1

wf
ljλ

q
liDlij ∗ (1 + Impl) + γ

k∑
l=1

m∑
i=1

λq
liχ

2
li

where

Dlij = (zli − xji)2

subject to

k∑
l=1

wlj = 1, 1 ≤ j ≤ n, 1 ≤ l ≤ k, 0 ≤ wlj ≤ 1

m∑
i=1

λli = 1, 1 ≤ i ≤ m, 1 ≤ l ≤ k, 0 ≤ λli ≤ 1

In this objective function, W, Z and Λ represent the cluster membership, cluster centroid and
dimension weight matrices respectively. Also, the parameter f controls the fuzziness of the mem-
bership of each data point, q further modifies the weight of each dimension of each cluster (λli) and
finally, γ controls the strength of the incentive given to the Chi Square component and dimension
weights.

Since we are using fuzzy cluster membership, a point can be member of multiple clusters at the
same time. However, in order to calculate a, b, c, d and m using the previously provided definitions
in Section 3.2, we have to use a threshold to determine which point can be regarded as a member of
a cluster (i.e., if the membership value of a point in a cluster is larger than a predefined threshold, it
is considered a member of that cluster). This, not only brings forth another parameter, but also the

291

2010 Conference on Intelligent Data Understanding



membership values themselves are undermined in the computation. So, we modify the calculation
of these counts to consider the corresponding membership values of each point. As a result, we get,

a =
n∑

j=1

∑
di∈xj

wlj , b = 1 −

n∑
j=1

∑
di∈xj

wlj

c =
n∑

j=1

∑
di /∈xj

wlj , d = 1 −

n∑
j=1

∑
di /∈xj

wlj

m = total number of labeled points

3.5. Update Equations. Minimization of F in Eqn. 2 with the constraints, forms a class of con-
strained nonlinear optimization problems. This optimization problem can be solved using partial
optimization for Λ, Z and W. In this method, we first fix Z and Λ and minimize F with respect to
W. Second, we fix W and Λ and minimize the reduced F with respect to Z. And finally, we minimize
F with respect to Λ after fixing W and Z.

3.5.1. Dimension Weight Update Equation. Given matrices W and Z are fixed, F is minimized if

(3) λli =
1

Mlij

∑m

i=1
1

Mlij

where

Mlij =

⎧⎨
⎩

n∑
j=1

wf
ljDlij ∗ (1 + Impl) + γχ2

li

⎫⎬
⎭

1
q−1

In order to get the above equation, first, we use the Lagrangian Multiplier technique to obtain the
following unconstrained minimization problem:

minF1({λli}, {δl}) =
k∑

l=1

n∑
j=1

m∑
i=1

wf
ljλ

q
liDlij ∗ (1 + Impl) + γ

k∑
l=1

m∑
i=1

λq
liχ

2
li −

k∑
l=1

δl(
m∑

i=1

λli − 1)(4)

where [δ1, ..., δk] is a vector containing the Lagrange Multipliers corresponding to the constraints.
The optimization problem in Eqn. 4 can be decomposed into k independent minimization problems:

minF1l(λli, δl) =
n∑

j=1

m∑
i=1

wf
ljλ

q
liDlij ∗ (1 + Impl) + γ

m∑
i=1

λq
liχ

2
li − δl(

m∑
i=1

λli − 1)(5)

for l = 1, ..., k. By setting the gradient of F1l with respect to λli and δl to zero, we obtain

(6)
∂F1l

∂δl

=

(
m∑

i=1

λli − 1

)
= 0

and

(7)
∂F1l

∂λlr

=
n∑

j=1

wf
ljqλ

(q−1)
lr Dlrj ∗ (1 + Impl) + γqλ

(q−1)
lr χ2

lr − δl = 0

Solving the above equations, we get

λli =
1

Mlij

∑m

i=1
1

Mlij

where

Mlij =

⎧⎨
⎩

n∑
j=1

wf
ljDlij ∗ (1 + Impl) + γχ2

li

⎫⎬
⎭

1
q−1

292

2010 Conference on Intelligent Data Understanding



3.5.2. Cluster Membership Update Equation. Similar to the dimension update equation, we can
derive the update equations for cluster membership matrix W, given Z and Λ are fixed. The update
equation is as follows:

(8) wlj =
1

Nlij

∑k

l=1
1

Nlij

where

Nlij =

{
m∑

i=1

λq
liDlij

} 1
f−1

In order to derive the above equation, again, we use the Lagrangian Multiplier technique to obtain
an unconstrained minimization problem. By setting the gradient of F1l with respect to wlj and δl

to zero, we obtain

(9)
∂F1l

∂δl

=

(
k∑

l=1

wlj − 1

)
= 0

and

(10)
∂F1l

∂wlt

=
m∑

i=1

fw
(f−1)
lt λq

liDlij ∗ (1 + Impl) − δl = 0

Solving these equations, we can derive the update equation for cluster membership.

3.5.3. Cluster Centroid Update Equation. The cluster center update formulation is similar to the
formulation of dimension and membership update equations. We can derive the update equations
for cluster center matrix Z, given W and Λ are fixed. The update equation is as follows:

(11) zli =

∑n

j=1 wf
ljxij∑n

j=1 wf
lj

4. Semi-supervised Impurity Based Subspace Clustering For Multi Labeled Data

(SISC-ML)

If the data is multi-labeled, then the Impurity Measure calculation provided in the previous section
does not hold true. This happens as the classes may overlap. Therefore, the sum of probabilities
may become greater than 1. Hence, we modify the impurity calculation in the generalized case (i.e.,
not fuzzy) as follows:

The Entropy of a cluster cl is then computed as

Entl =
T∑

t=1

(−pl
t ∗ log(pl

t) − (1 − pl
t) ∗ log(1 − pl

t))

where pl
t is the prior probability of class t as defined in Eqn. 1. We also modify ADCl and we

can show that ADCl is proportional to the multi-label gini index of cluster cl:
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ADCl =
∑

xi∈Lcl

(DCl(xi, yi) + DC ′

l(xi, yi))

=
T∑

t=1

((|Lcl
(t)|)(|Lcl

| − |Lcl
(t)|) + (|Lcl

(t′)|)(|Lcl
| − |Lcl

(t′)|))

= (|Lcl
|)2

T∑
t=1

((pl
t)(1 − pl

t) + (p′lt )(1 − p′lt ))

= (|Lcl
|)2(T −

T∑
t=1

(pl
t)

2 −

T∑
t=1

(1 − pl
t)

2)

= (|Lcl
|)2 ∗ Ginil

where, t′ consists of all classes except t and Ginil is the gini index for multi-labeled data.
We can then use this ADCl in our calculation of Impurity. It is apparent that, all the update

equations remain the same, only the calculation of Impurity differs. We apply the previous for-
mulation of fuzzy probability calculation in Eqn. 1 in this case too, in order to use the Multi-label

Impurity Measure in our model.

5. Experiments and Results

We have performed extensive experiments to find out the performance of SISC-ML in a multi-
label environment. In the next part, we will describe the data sets used in the experiments and also
the base line methods against which we have compared our results.

As mentioned in the introduction, we have focused our classification on the ASRS data set. We
have also used another 2 multi-label data sets to verify the effectiveness of our algorithm. In all
cases, we used fifty percent of the data as training and the rest as test in our experiments as part of
2-fold cross-validation. Similar to other text classification approaches, we performed preprocessing
on the data and removed stop words from the data. We used binary unigram features as dimensions,
i.e., features can only have 0 or 1 values. If a feature is present in a document, the corresponding
feature gets a value of 1 in the feature vector of that document, otherwise it is 0. The parameter γ
is set to 0.5. For convenience, we selected 1000 features based on information gain and used them
in our experiments. In all the experiments related to a data set, the same feature set was used. We
performed multiple runs on our data sets. And, in each case, the training set was chosen randomly
from the data set.

5.1. Data sets. We describe here all the three multi-label data sets that we have used for our
experiments.

(1) NASA ASRS Data Set: We randomly selected 10, 000 data points from the ASRS data set
and henceforth, this part of the data set will be referred to as simply ASRS Data Set. We
considered 21 class labels (i.e., anomalies) for our experiments. This is a multi-label data
set and it allows us to determine the performance of our proposed multi-label method.

(2) Reuters Data Set: This is part of the Reuters-21578, Distribution 1.0. We selected 10, 000
data points from the 21, 578 data points of this data set and henceforth, this part of the
data set will be referred to as simply Reuters Data Set. We considered the most frequently
occurring 20 class labels for our experiments. Of the 10, 000 data points, 6651 are multi-
labeled. This data set, therefore, allows us to determine the performance of our multi-label
formulation.
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(3) 20 Newsgroups Data Set: This data set is also multi-label in nature. We selected 15, 000
documents randomly for our classification experiments. Of them 2822 are multi-label doc-
uments and the rest are single labeled. We have performed our classification on the top 20
class labels of this data set.

5.2. Base Line Approaches. We have chosen 3 sets of baseline approaches. First, we compared
our method with the basic κ-nearest neighbor (κ-NN) approach as we are using κ-NN method
along with clustering in SISC-ML. Second, we compare two subspace clustering approaches with
our method. They are SCAD2 [9] and K-Means Entropy [11] approaches. The reason behind
using them as baseline approaches is that they have similarities in objective functions with our
method. So, a comparison with them will show the effectiveness of our algorithm from a subspace
clustering perspective. Finally, we perform experiments using two multi-label classification methods
and compare them to SISC-ML. They are Ensemble of Pruned Set (referred to simply as Pruned

Set for convenience) and MetaLabeler approaches. Both these methods that we have chosen, are
state-of-the-art multi-label approaches. Below we describe these 5 baseline approaches briefly.

5.2.1. Basic κ-NN Approach. In this approach, we find the nearest κ neighbors in the training set
for each test point. Here κ is a user defined parameter. After finding the neighbors, we find how
many of these neighbors belong to the t-th class. We perform this calculation for all the classes.
We can then get the probability of the test point belonging to each of the classes by dividing the
counts with κ. Finally, using these probabilities, for each class, we generate ROC curves and take
their average to compare with our method.

5.2.2. SCAD2. SCAD2 [9] is a soft subspace clustering method with a different objective function
than our method. This clustering method is also fuzzy in nature and can be considered the most
basic form of fuzzy subspace clustering, as it does not consider any other factors during clustering
except for dispersion. Its objective function has close resemblance to the first term of our proposed
objective function. As mentioned earlier, the reason we have used this method as benchmark is due
to this similarity. The objective function of SCAD2 is as follows:

F (W, Z,Λ) =
k∑

l=1

n∑
j=1

m∑
i=1

wf
ljλ

q
li|xij − zli|(12)

After performing this clustering using the same E-M formulation of our algorithm, we use κ
nearest clusters of each test point to calculate label probabilities.

5.2.3. K-Means Entropy. This is another soft subspace clustering approach that we compare with
SISC-ML. Its objective function has two components, the first one is based on dispersion and the
second one is based on the negative entropy of cluster dimensions. Another difference between this
approach and SCAD2 is that it is not fuzzy in nature. So, a training data point can belong to only a
single cluster. The objective function that is minimized, as specified in [11] to generate the clusters,
is as follows:

F (W, Z,Λ) =
k∑

l=1

n∑
j=1

m∑
i=1

wljλliDlij + γ

k∑
l=1

m∑
i=1

λlilog(λli)(13)

5.2.4. MetaLabeler. This is a multi-label classification approach [17] that learns a function from the
data to the number of labels. It involves two steps - i) constructing the meta data set and ii) learning
a meta-model. The label of the meta data (example shown in Table 1) is the number of labels for
each instance in the raw data. There are three ways that this learning can be done. We have applied
the Content-based MetaLabeler to learn the mapping function from the features to the meta label,
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Data Labels
x1 C1, C3

x2 C1, C2, C4

x3 C2

x4 C2, C3

Meta Feature Meta Label
φ(x1) 2
φ(x2) 3
φ(x3) 1
φ(x4) 2

Table 1. Construction of Meta Data In MetaLabeler

Methods ASRS Reuters 20 Newsgroups
SISC-ML 0.666 0.815 0.84

κ-NN 0.552 0.585 0.698
SCAD2 0.482 0.533 0.643

K-Means Entropy 0.47 0.538 0.657
MetaLabeler 0.58 0.762 0.766
Pruned Set 0.469 0.56 0.60

Table 2. Area Under The ROC Curve Comparison Chart For Multi-Label Classification.

that is the number of labels. As specified in [17], we consider the meta learning as a multi-class
classification problem and use it in conjunction with One-vs-Rest SVM using the following steps:

(1) Given an instance, obtain its class membership ranking based on the SVM classifier scores.
(2) Construct the input to the meta-model for each instance using Content-based MetaLabeler

method.
(3) Predict the number of labels kv for test instance xv based on the meta-model.
(4) Pick the kv highest scoring class labels as prediction for test instance xv.

We, therefore, train T + 1 SVM classifiers where T is the total number of class labels in the
data set. Of these classifiers, one is multi-class and the rest are One-vs-Rest SVM classifiers for
each of the class labels. We then normalize the scores of the predicted labels and consider them as
probabilities for generating ROC curves.

5.2.5. Pruned Set. The main goal of this algorithm is to transform the multi-label problem into
a multi-class problem. In order to do so, the Pruned Set [15] method finds frequently occurring
subsets of class labels. Each of these sets (or combinations) of class labels are considered as a
distinct label. The benefit of using this approach is that, the user has to consider only those class
label combinations that occur in the data set, the number of which is small. If all possible class label
combinations were considered, then the user would have to handle an exponential number of such
class combinations. The user specifies parameters like what is the minimum count of a class label
combination to be considered as frequent and the minimum size (i.e., class combinations having at
least r class labels) of such sets or combinations.

At first, all data points with label combinations having sufficient count are added to an empty
training set. This training set is then augmented with rejected data points having label combinations
that are not sufficiently frequent. This is done by making multiple copies of the data points, only
this time the assigned class label is a subset of the original label set. So, some data points may be
duplicated during this training set generation process. This training set is then used to create an
ensemble of SVM classifiers. The number of retained label subsets, that is added to the training
set, is also varied and the best result is reported.

5.3. Evaluation Metric. In all of our experiments, we use the Area Under ROC Curve (AUC)

to measure the performance of our algorithm. For all the baseline approaches and our SISC-ML

method, we generate each class label prediction as a probability. Then, for each class we generate an
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Figure 2. ROC Curves for (a) NASA ASRS Data Set (b) Reuters Data Set (c) 20
Newsgroups Data Set.

DataSets 10% Labeled 25% Labeled 50% Labeled 75% Labeled 100% Labeled
Data Data Data Data Data

ASRS 0.658 0.662 0.678 0.675 0.666
Reuters 0.821 0.818 0.795 0.808 0.815

20 Newsgroups 0.836 0.858 0.838 0.826 0.84

Table 3. AUC Comparison Chart For Different Percentages Of Labeled Data Using
SISC-ML.

ROC curve based on these probabilities. After generating all the ROC curves, we take the average
of them to generate a combined ROC curve. Finally, the area under this combined ROC curve is
reported as output. This area can have a range from 0 to 1. The higher the AUC value, the better
the performance of the algorithm.

5.4. Results and Discussion. As can be seen from Figure 2(a), SISC-ML performs much better
than the baseline approaches. In Table 2, the AUC values for SISC-ML and all the baseline ap-
proaches are provided. The AUC value for SISC-ML is 0.666 on the ASRS data set. The closest
performance for this data set is provided by the state-of-the-art MetaLabeler approach which is 0.58.
Therefore, there is around 8% increase in performnace with our approach.

Similar results can be found for Reuters and 20 Newsgroups data sets. In Figure 2(b) and
Figure 2(c), we provide these results. Just like the ASRS data set, SISC-ML provides the best
result. For Reuters data set, our algorithm achieves an AUC value of 0.815 and the nearest value
is 0.762, achieved by the MetaLabeler approach. And, for 20 Newsgroups data set, our algorithm
achieves AUC value of 0.84 whereas, the nearest value is 0.766 achieved by the same MetaLabeler

approach.

5.5. Performance On Limited Labeled Data. We have varied the amount of labeled data in
our data sets to find out how this aspect impacts the performance of our SISC-ML algorithm. Ex-
periments are done by considering 10%, 25%, 50%, 75% and 100% of the training data as labeled.
The labeled data points were chosen randomly in all of these experiments. As can be seen from
Figure 3(a), 3(b) and 3(c), even with significant changes in the amount of labeled data, the perfor-
mance of our algorithm remains considerably similar. The AUC values are summarized in Table 3.
From these results, we can conclude that our algorithm can perform well even when limited amount
of labeled data is available for training.
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Figure 3. ROC Curves For Different Percentages Of Labeled Data In (a) NASA
ASRS Data Set (b) Reuters Data Set (c) 20 Newsgroups Data Set.

6. Conclusions

In this paper, we have presented SISC-ML, a multi-label semi-supervised text classification ap-
proach based on fuzzy subspace clustering. SISC-ML identifies clusters in the subspace for high di-
mensional sparse data and uses them for classification using κ-NN approach. Also, our formulation
of this fuzzy clustering allows us to handle multi-labeled text data. SISC-ML, being semi-supervised,
uses both labeled and unlabeled data during clustering process and as can be seen from the empirical
evaluation, performs well even when limited amount of labeled data is available. The experimental
results on real world multi-labeled data sets like ASRS, Reuters and 20 Newsgroups, have shown
that SISC-ML outperforms κ-NN, K Means Entropy based method, SCAD2 and state-of-the-art
multi-label text classification approaches like MetaLabeler and Pruned Set in classifying text data.
There are still scopes for improvement as well as possibility of extending this new algorithm. In
future, we would like to incorporate label propagation in our classification approach for better clas-
sification model as well as train not only one but multiple classifiers in an ensemble model. We
would also like to extend our algorithm to classify streaming text data.
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[16] J. Struyf and S. Džeroski. Clustering trees with instance level constraints. In ECML ’07: Proceedings of

the 18th European conference on Machine Learning, pages 359–370, Berlin, Heidelberg, 2007. Springer-
Verlag.

[17] L. Tang, S. Rajan, and V. K. Narayanan. Large scale multi-label classification via metalabeler. In
WWW ’09: Proceedings of the 18th international conference on World wide web, pages 211–220, New
York, NY, USA, 2009. ACM.

[18] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector machine learning for in-
terdependent and structured output spaces. In ICML ’04: Proceedings of the twenty-first international

conference on Machine learning, page 104, New York, NY, USA, 2004. ACM.
[19] G. Tsoumakas and I. Vlahavas. Random k-labelsets: An ensemble method for multilabel classification.

In ECML ’07: Proceedings of the 18th European conference on Machine Learning, pages 406–417, Berlin,
Heidelberg, 2007. Springer-Verlag.

[20] N. Ueda and K. Saito. Parametric mixture models for multi-labeled text. In Advances in Neural Infor-

mation Processing Systems 15. Cambridge: MIT Press., 2003.
[21] K. Yip, D. Cheung, and M. Ng. Harp: a practical projected clustering algorithm. IEEE Transactions

on Knowledge and Data Engineering, 16(11):1387–1397, Nov. 2004.
[22] K. Yu, S. Yu, and V. Tresp. Multi-label informed latent semantic indexing. In SIGIR ’05: Proceedings

of the 28th annual international ACM SIGIR conference on Research and development in information

retrieval, pages 258–265, New York, NY, USA, 2005. ACM.
[23] M.-L. Zhang and Z.-H. Zhou. Ml-knn: A lazy learning approach to multi-label learning. Pattern Recog-

nition, 40(7):2038 – 2048, 2007.

299

2010 Conference on Intelligent Data Understanding




